EVALUACIÓN DE PROTEÍNA HIDROLIZADA Y PULPA DE MANGO COMO ATRAYENTE EN TRAMPEOS PARA LA MOSCA DE LA FRUTA (Therphitidae) EN MANGO (Mangifera indica L), NANDAYURE, GUANACASTE-2019

ARCE GUZMÁN NATALIA
RIVERA LÓPEZ CARLOS ROMEO

CAÑAS, 2019
TRIBUNAL EVALUADOR

MSc. María de los Ángeles Arias Alfaro
Tutor

MBa. José Miguel Mayorga Jiménez
Lector

MSc. York Quiroz Pérez
Lector

Lic. Iván Gerardo Durán Méndez
Director de Carrera Ingeniería Agrónomica. ia
DEDICATORIA

Este logro se lo dedico a mi Dios Todopoderoso y la Virgencita de los Ángeles, que sin ellos no soy nadie, y con la ayuda y misericordia de los mismos pude sacar esta labor avante.

A mi madre, Argentina Guzmán Guzmán, a mi abuela y segunda madre, Ramona Guzmán Castro y a mi hermano Jorge Arce Guzmán por ser las personas que me han motivado a realizar lo que me gusta con responsabilidad, dedicación y amor, por enseñarme que, si me caigo diez veces, tengo que levantarme once veces. Por enseñarme con ejemplos que, aunque la vida sea difícil siempre hay un motivo para estar en pie, y que sin Dios no somos nada.

Por eso, he decidido dedicarle este Triunfo a ellos, que son las personas que más amo y son las bases de mi formación como ser humano.

Natalia Arce Guzmán.

Dedico este trabajo principalmente a Dios, por permitirme llegar a este momento tan importante en mi formación profesional. A mi madre, Lilliana López Delgado, a mi padre, Carlos Rivera Carballo, por ser los pilares más importantes y por demostrarme siempre su cariño, por sus consejos, sus valores, por la motivación constante que me ha permitido ser una persona de bien y su apoyo incondicional.

Carlos Romeo Rivera López.
AGRADECIMIENTOS

Se le agradece a:

Primeramente, a Dios por ser nuestro guía durante nuestras vidas y durante este proyecto.

A un grupo de personas que fueron vitales en nuestra tesis, a la directora de carrera y nuestra tutora María Arias conocida como Marielos por apoyarnos incondicionalmente, por su paciencia y entrega hacia cada alumno que visita su oficina.

También, le agradecemos a los señores Manuel Acón, Luis Ulloa por brindarnos la oportunidad de realizar las pruebas de campo en sus propiedades, y además por confiar en nosotros y asesorarnos.

Y, por último, pero no menos importante, al profesor José Mayorga por ser un excelente guía y pilar en el desarrollo del anteproyecto.

Natalia Arce Guzmán - Romeo Rivera López
Índice

CAPÍTULO I. .. 10
 Introducción... 11
 Área de estudio, delimitación del problema y justificación................................. 12
 Área de estudio.. 12
 Delimitación del problema... 13
 Justificación ... 14
 Situación actual del conocimiento del tema... 15
 Objetivos.. 17
 Objetivo general .. 17
 Objetivos específicos ... 17

CAPÍTULO II. .. 18
 Marco teórico.. 19
 Generalidades de la mosca de la fruta .. 19
 Métodos de manejo integrado de moscas de la fruta ... 21
 Trampeo en moscas de la fruta. .. 22
 Generalidades del cultivo de mango ... 23

CAPÍTULO III. .. 25
 Marco metodológico ... 26
 Enfoque de la investigación .. 26
 Tipo de investigación ... 26
 Hipótesis .. 26
 Variables .. 27
 Métodos y materiales .. 27

CAPÍTULO IV. .. 34
 Presentación y análisis de resultados ... 35
 Análisis estadísticos entre bloque ... 36
 Comparación entre Muestreos .. 38
 Andeva de los tratamientos .. 39

CAPÍTULO V. .. 42
 Conclusiones y recomendaciones ... 43
Conclusiones .. 43
Recomendaciones .. 44
CAPÍTULO VI ... 45
Bibliografía y anexos ... 46
Bibliografía .. 46
Anexos ... 47

Índice Cuadros

Cuadro 1. Variables y definiciones .. 27
Cuadro 2. Normalidad y homogeneidad de variancias .. 36
Cuadro 3. Análisis de variancia entre bloques ... 36
Cuadro 4. Análisis de variancia entre muestreos .. 38
Cuadro 5. Análisis de varianza de los tratamientos ... 39

Índice Gráficos

Gráfico 1. Número de moscas capturadas ... ¡Error! Marcador no definido.
Gráfico 2. Análisis de variancia entre bloques .. 37
Gráfico 3. Análisis de variancia entre muestreos .. 38
Gráfico 4. Análisis de varianza de los tratamientos ... 40

Índice Ilustraciones

Ilustración 1. Ubicación de zona de estudio .. 13
Ilustración 2. Codificación de trampa ... 28
Ilustración 3. Codificación de trampas ... 28
Ilustración 4. Croquis de posicionamiento de bloques ... 29
Ilustración 5. T1: Proteína hidrolizada y T2: Pulpa de mango 30
Ilustración 6. Trampas caseras ... 31
Ilustración 7. Croquis de colocación correcta de trampas 32
Ilustración 8. Elaboración de trampa ... 48
Ilustración 9. Botella en forma de embudo para trampa .. 48
Ilustración 10. Trampas listas .. 49
Ilustración 11. Grados de maduración de mango .. 50
Ilustración 12. Mango para preparación de la pulpa .. 50
Ilustración 13. Pulpa de mango ... 51
Ilustración 14. Prueba de normalidad ... 51
Ilustración 15. Prueba de momogeneidad de variancias .. 51
Ilustración 16. Análisis de variancia entre bloques ... 52
Ilustración 17. Análisis de variancia entre semanas .. 52
Ilustración 18. Análisis de Variancia entre tratamientos .. 53
Tabla Abreviaturas

C°: Grados centígrados.

DGC: Método estadístico de correlación (Di Rienzo, Guzmán, y Casanoves).

Ho: Hipótesis nula.

H1: Hipótesis alternativa.

Kg: Kilo gramo.

Km²: Kilómetro cuadrados.

Mm: Milímetros.

Ml: Mililitros.

P: Página.

P<: Estimación del estadístico de prueba cae en zona de rechazo.

S.F: Sin fecha.

T1: Tratamiento de proteína hidrolizada.

T2: Tratamiento pulpa de mango.
Resumen

Los métodos de trampeos para la captura de moscas de la fruta en el cultivo de mango son muy importantes. Para lograr disminuir las altas poblaciones de la plaga es imprescindible acudir al manejo integrado de la misma. Dentro de los métodos de captura se encuentra el trampeo con el atrayente alimenticio llamado proteína hidrolizada.

Por consiguiente, el propósito de este estudio es la evaluación de dos métodos de trampeo que cumplen su función como atrayentes alimenticios (proteína hidrolizada y pulpa de mango) para la captura de mosca de la fruta en mango. La idea de incorporar la pulpa de mango es con la finalidad de determinar que es más efectiva que la proteína hidrolizada y así poder sustituirla.

Al finalizar el análisis de resultados se encuentra que la pulpa de mango no presentó las características y eficiencias esperadas por los investigadores, es decir, no puede sustituir a la proteína hidrolizada como método de trampeo para la captura de moscas de la fruta.

Palabras claves: Mosca fruta, levadura de torula, pulpa mango, trampeo, control.
Abstract

The trapping methods for catching fruit flies in mango cultivation are very important. In order to reduce the high populations of the pest, it is essential to resort to its integrated management. Among the capture methods is the trapping with the food attractant called hydrolyzed protein.

Therefore, the purpose of this investigation is the evaluation of two trapping methods that have their function as food attractants (hydrolyzed protein and mango pulp) for the capture of fruit fly in mango. The idea of incorporating mango pulp is to determine that it is more effective than hydrolyzed protein and thus be able to replace it.

At the end of the analysis of results, it was found that mango pulp did not present the characteristics and efficiencies expected by the researchers, that is, it cannot replace hydrolyzed protein as a trapping method for catching fruit flies.

Keywords: Fruit fly, torula yeast, mango pulp, trapping, control.
CAPÍTULO I.
Introducción

En la actualidad, las moscas de la fruta es un tema de gran relevancia, es un problema que tiene sus antecedentes ante ataques a especies frutales y hortícolas.

Las enormes dificultades para el desarrollo de la fruticultura, principalmente en algunas regiones tropicales, en gran medida obedecen al efecto devastador de las moscas de la fruta, no son algo nuevo. Este grupo de insectos, representado por por varias familias dentro de la clasificación taxonómica del orden Diptera, tienen suficientes ejemplos de especies que se convierten en severos problemas para el desarrollo frutícola. Las investigaciones en el campo de moscas de la fruta se han intensificado y han producido resultado de gran interés. Éstas han causado un daño, específicamente al cultivo de mango en la provincia de Guanacaste que es donde se da una alta producción.

Para la captura de moscas de la fruta existen varios métodos, uno muy importante es el uso de la proteína hidrolizada en trampas, éste trata de un atrayente alimenticio para la captura masiva de las mismas presentado en forma líquida. Dicho método retiene los insectos capturados, provocando que se sumerjan y mueran ahogados.

En este documento se evaluó la proteína hidrolizada y pulpa de mango como método de trampeo para la captura de mosca de la fruta en mango, mediante ensayo estadístico de bloques alzar en el campo para la determinación del atrayente más eficiente.
Área de estudio, delimitación del problema y justificación

Área de estudio

La investigación se llevó a cabo en Finca El Canjel, ubicada en el sector de Santa Rita, del cantón de Nandayure, provincia de Guanacaste. La posición geográfica de la misma es 09°54’13” latitud norte, y 85°18’18” longitud oeste. Esta zona presenta una época seca que va desde diciembre hasta abril, y otra época lluviosa desde mayo hasta noviembre. La temperatura ronda de 28°C a 32°C, la velocidad del viento promedio es de 8 km/hr y las precipitaciones tienen un promedio de 240 mm anuales.

La finca cuenta con una extensión de 60 hectáreas cultivadas de mango, con variedades como Tommy Atkins, Keitt, e Irwin. El tipo de suelo que se encuentra es arenoso y presenta una topografía plana.

El Distrito Santa Rita está dividido en 9 poblados, entre los cuales están Angostura, Cacao, Chumico, Guaria, Guastomatal, Morote, Teconis, Uvita y Yerba Buena; con una densidad de 1437 habitantes.

El área total es de 50,09 km2, conformada por 1432 habitantes, de los cuales 705 son hombres y 732 son mujeres. Cuentan con servicios básicos como centros educativos, transporte público, servicio de salud (EBAIS), carreteras asfaltadas, servicio de agua potable, y servicio de telefonía.

En Santa Rita se desarrollan diversas actividades económicas principalmente en el sector agronómico representadas por melón, mango y sandía, que es la materia prima de las principales exportaciones del país.
La zona de estudio pertenece a la vertiente del pacífico y está ubicada en la cuenca de Golfo de Nicoya y en la Sub cuenca de río Santa Rita.

Ilustración 1. Ubicación de zona de estudio

Delimitación del problema

El trabajo de tesis se desarrolló en un área de 10.000 metros cuadrados. El área de estudio se dividió en seis bloques. Cada bloque estuvo constituido por seis árboles de mango, es decir, había tres muestras por tratamiento en cada bloque. La variedad que se encuentra en el lote es Irwin, la distancia de siembra es de 7x14 metros. El diseño experimental que se utilizó fue bloques al azar, las trampas fueron artesanales en forma de embudo, los tratamientos que se evaluaron fueron proteína hidrolizada la cual se utilizaron 4 pastillas de levadura de torula y 300 mililitros de agua por trampa, pulpa de mango, se usó 300 mililitros de pulpa y 200 mililitros de agua por trampa. Las inspecciones y conteos de la mosca de la fruta se realizaron cada 8 días, en los meses de febrero, marzo y abril en época seca.
Justificación

La proteína hidrolizada es un atrayente no específico, ya que atrae cualquier tipo de insecto que necesita para su desarrollo un alto grado de proteínas. Las capturas de la mosca del mediterráneo en su mayoría son hembras grávidas que requieren madurar los huevos.

Otra característica de este atrayente es que se volatiliza en compuestos fenólicos, por lo que no debe de excederse más de ocho días en su exposición, este tiene un radio de acción de 30 metros.

A diferencia la pulpa de mango es una materia prima que se consigue con facilidad ya que se encuentra en el mismo cultivo, a los mangos que se les extrae la pulpa solo deben estar en la maduración correcta, esto para que tenga el olor adecuado al igual que el color que atrae a las moscas de la fruta. Después, solo se debe usar con las proporciones correctas en la trampa para su efectividad.

Los costos de los tratamientos son de gran diferencia ya que la proteína hidrolizada tiene un costo de 21000 colones el kilogramo, y la pulpa de mango se extrae de la misma finca por lo tanto solo se debe de agregar el valor del proceso que es de 350 colones el kilogramo.

De igual forma usar la fruta que cae al suelo para utilizarla como atrayente en las trampas da gran beneficio al ambiente, porque recoger los residuos es un control cultural para la mosca de la fruta, esto ayuda a bajar la densidad de población por la recolección del fruto, a tener un mejor control de poblaciones por el
trampeo en la cual se utiliza el resto de los residuos y también se da la disminución del uso de pesticidas.

Con esta investigación se pretende buscar una alternativa a los productores de fácil acceso, que esté al alcance de todos, que sea seguro y eficiente. Además, se procura disminuir daños en la fruta, causados por las moscas mediante la captura de las mismas. También, se desea probar la efectividad del tratamiento de pulpa de mango, ya que el mismo es amigable con el medio ambiente.

Situación actual del conocimiento del tema

Se realizaron estudios en el municipio de San Marcos, departamento de Carazo Nicaragua, el objetivo de la investigación fue generar información para el manejo de la mosca del mediterráneo (*Ceratitis capitata Wied*) en el cultivo de mandarina (*Citrus reticulata Blanco*). Se emplearon trampas Jackson, Tephritrap y Multilure. Los atrayentes fueron Trimedlure, Ceratrap y Torula. Se evaluó número de adultos capturados, porcentaje de machos y hembras capturados. A los resultados se les aplicó estadísticos descriptivos, correlación, análisis de varianza de medidas repetidas. La trampa Tephritrap cebadas con Ceratrap capturó el mayor número de hembras y las trampas Jackson la mayor cantidad de machos. La temperatura estuvo altamente relacionada con los adultos capturados. (Carrasco, 2015, p. 8)

Los objetivos de este trabajo fueron determinar la eficacia del tipo de trampa y atrayente en función de especies del género Anastrepha, se evaluó el efecto de la altura y la posición de la trampa, también compararon la eficacia de trampas
comerciales, fueron trampas McPhail y Multilure de plástico con diferentes atrayentes (proteína líquida + bórax,) además con la trampa Multilure usaron dos atrayentes más (acetato de amonio + putrescina.). Los resultados demostraron que el tratamiento que corresponde a la combinación de la trampa Multilure, tuvo mayor abundancia de especies en todos los sitios. La altura de la trampa no tuvo efecto se capturó en todas las posiciones. (Rodríguez, 2010, p. 1)

Además se desarrolló en tres cantones de Ecuador, el monitoreo de las poblaciones de moscas a través de trampas tipo McPhail y Jackson, utilizando como atrayente cebadas con proteína hidrolizada, ocupándose 250 ml por trampa, y ubicadas en la parte media de árboles evaluados. La toma de datos la realizaron cada siete días llevando un registro de la población e identificación de los géneros y especies de moscas, se encontró Ceratitis capitata Wied en cantón el Pan. Mientras que los géneros de Anastrepha obliqua Macquart, Anastrepha striata Schiner y Anastrepha grandis Macquart durante todo el estudio de monitoreo se encontraron una población mínima, que representan 0.01% y 0.05% respectivamente. (Antuash y Chuquimarca, 2016, p.1).

Esta investigación consistió en identificar las especies de mosca de la fruta de los géneros Anastrepha y Ceratitis, y sus hospederos en el sector del valle de Pachachaca, Abancay. Se llevó en el sector Pachachaca; cuyo procedimiento empleado a través de trampas tipo McPhail y utilizando como atrayente alimenticio (proteína hidrolizada, bórax y agua), ocupándose 250 ml por trampa, ubicadas en la parte media de árboles frutales evaluados. Las especies identificadas en el laboratorio de entomología de la UNALM son: Anastrepha fraterculus, Anastrepha distincta, Anastrepha serpentina, Anastrepha manihoti y Ceratitis capitata, en las
especies vegetales hospederas, guayaba (Psidium guajava L) de la familia *Myrtaceae*; chirimoya (Annona cherimola Mill) de la familia *Annonaceae*; guaba o pacay (Inga feuilleei) de la familia *Fabaceae*; naranja (Citrus sinensis) y limón (Citrus aurantifolia) de la familia *Rutáceae*. En los hospederos preferentes, se determinó 2006 adultos de mosca de la fruta con 1061 machos (52.8%) y 945 hembras (47.1%) del total de fruta muestreada de 312 unidades (35.25 kg.) de frutos y 148 frutos (16.72 Kg.). (Huaraca, 2018, p.4)

Objetivos

Objetivo general

Evaluar la proteína hidrolizada y pulpa de mango como método de trampeo para la captura de mosca de la fruta en mango, mediante ensayo estadístico de bloques alzar en el campo para la determinación del atrayente más eficiente, El Canjel, Santa Rita, Nandayure, Guanacaste.

Objetivos específicos

- Capturar las moscas de la fruta colocando trampas con proteína hidrolizada y pulpa de mango en la parcela del ensayo, para la determinación de la efectividad de los tratamientos.
- Determinar la cantidad de moscas capturadas, inspeccionando las trampas de proteína hidrolizada y de pulpa de mango, para el análisis de resultados.
- Analizar los resultados de moscas de la fruta capturadas, mediante el software InfoStat, comprobando cual atrayente alimenticio es más eficaz.
CAPÍTULO II.
Marco teórico

Generalidades de la mosca de la fruta

Según Quayle (1929) citado por Volosky (2010)

Las Moscas de las Frutas, corresponden a la Familia Trypetidae, estas poseen manchas en las alas; se alimentan de néctares azucarados que sacan de los frutos, la hembra tiene un ovopositor en forma de aguja con el que atraviesa la cascara de la fruta y depositan los huevos a cierta distancia de la superficie. (p. 9)

Existen muchos géneros y especies diferentes de moscas de la fruta; en Costa Rica los más importantes géneros son: Anastrepha, Ceratitis y Toxotrypana. Las hembras adultas depositan sus huevecillos debajo de la epidermis del fruto, estos eclosionan y se desarrollan como larvas alimentándose de la pulpa de la fruta, causando la pudrición del mismo y caída precoz. (Servicio Fitosanitario del Estado [SFE], 2011, p.2)

De acuerdo con la biología de las moscas de la fruta, ellas ovipositan en los frutos entre 1 a 10 huevos en cavidades de 1 mm de profundidad. Una hembra puede depositar hasta 22 huevos al día y de 300 a 800 durante toda su vida. Los huevos eclosionan 2 a 4 días después de la oviposición. (Sistema Nacional de Vigilancia Epidemiológica Fitosanitaria, 2010, p.14)

Matheus (2005) afirma lo siguiente:

El estado larval atraviesa por tres estadios, con una duración de 6 a 11 días; dependiendo de las condiciones ambientales, la larva madura del tercer estadío abandona el fruto, esta situación es usualmente coincidente con su
caída, la larva al abandonar el fruto se entierra a 2-3 centímetros de profundidad del suelo y se transforma gradualmente en pupa. (p. 16)

La longitud de la larva va a variar entre 3mm a 15mm, su forma tiene una característica particular: ensanchada en la parte caudal y se adelgaza hacia la cabeza. Su cuerpo está formado por 11 segmentos. (Matheus, 2005)

Una vez que se transforma en pupa, la misma tiene una duración entre 9 a 15 días. En ese periodo ocurre la transformación gradual en adulto al interior del pupario. Cuando logra alcanzar la madurez fisiológica, el adulto emerge del pupario. El adulto puede llegar a vivir hasta tres meses bajo condiciones favorables y tener hasta doce generaciones por año. (Matheus, 2005)

Las pupas es una capsula cilíndrica, el color vario en las distintas especies, presentando varias tonalidades, combinaciones entre café, rojo y amarillo, su longitud es de 3 a 10 mm y su diámetro de 1.25 mm a 3.25 mm. El adulto tiene el cuerpo amarillo, naranja, café o negro y combinaciones entre estos, se encuentra cubierto de pelos o cerdas, cabeza grande y ancha, recta o inclinada hacia atrás; ojos grandes, de color generalmente verde luminoso o violeta. (Matheus, 2005, p. 19)

Según Elgueta (1930) citado por Volosky (2010)

El ciclo evolutivo de este insecto se inicia con la postura del huevo por la hembra. Después de 9 a 12 días que ella ha abandonado su crisálida, vuela entre los árboles frutales en busca de un huésped adecuado, explora la superficie de la fruta con un vuelo lento, al detenerse pliega un ala primero y después la otra. La duración de la vida de la mosca depende de las
condiciones climatéricas y de la abundancia de alimentos. Son ellos los factores directos de su aumento o disminución. (p.12)

Métodos de manejo integrado de moscas de la fruta

Para lograr reducir las altas poblaciones de moscas de la fruta y disminuir el daño que las mismas producen es indispensable que se recurra al manejo integrado de la plaga. “Estos métodos que se emplean son los siguientes: cultural, físico, biológico y químico”. (Larriva, Encalada y Feicón, 1999, p. 15)

De acuerdo a Larriva…et al. (1999) todos esos métodos de control son indispensables, ya que cada uno de ellos cumple un objetivo en específico dentro del programa de manejo integrado de moscas de la fruta.

Manejo Cultural: Dentro del manejo cultural para disminuir las poblaciones se encuentran las siguientes practicas: manejo integrado del huerto (poda, fertilización y abonadura, riegos oportunos, tratamientos pre y post florales, tratamientos de inviernos, otros) y recolección de fruta hospedera caída, esto significa que cada semana se debe recoger la fruta caída y eliminarlos (enterrarlos o ponerlos en la compostera). (Larriva…et al. (1999), p. 16)

Manejo Físico: Se pueden utilizar el empleo de trampas (alimenticias y visuales), funcionan como un sistema de monitoreo de la plaga en una determinada zona.

Trampas visuales: a las moscas de la fruta les atrae mucho el color amarillo, por lo tanto se aprovecha para utilizar trampas de este color.

Trampas alimenticias: hechas a base de un atrayente alimenticio el cual se pone en una botella plástica o trampas tipo McPhail. El atrayente alimenticio puede estar constituido por proteína hidrolizada, melaza, o miel de caña. Todos estos
productos cuando están fermentados atraen un mayor número de moscas. (Larriva…et al. (1999), p. 17-20)

Manejo Biológico: existen insectos que son enemigos naturales de las moscas de la fruta, sin embargo, sus acciones como reguladores de altas poblaciones de la plaga no alcanza un significativo nivel, por lo cual es necesario complementarlo con otros métodos. Pero a pesar de lo dicho anteriormente es importante preservarlos, por lo cual no se recomienda el uso indiscriminado de pesticidas e insecticidas. (Larriva…et al. (1999), p. 21)

Método químico: consiste en utilización de cebo tóxico (insecticida, proteína hidrolizada y agua), y su aplicación al estrato del medio ambiente. Si se emplea de manera no técnica, su aplicación aparte de ser antieconómica, puede resultar negativa por los efectos que su aplicación tiene sobre el ecosistema y personas. (Larriva…et al. (1999), p. 22)

Trampeo en moscas de la fruta.

Como lo explica el Instituto Colombiano Agropecuario [ICA], 2011, la trampa de moscas es:

Una estructura física con características que le permiten atraer y capturar algún organismo específico, para el caso de las moscas de la fruta consiste en la combinación de un atrayente, un cuerpo y un método de retención, el atrayente se refiere a un producto natural o sintético que origina la acumulación de los insectos al ser inducidos a desplazarse hacia su origen. (p. 5)
Si la captura de las moscas de la fruta se da en un medio líquido, por ejemplo, proteína hidrolizada diluida en agua, ésta retiene los insectos capturados, provocando que los insectos se sumerjan y mueran ahogados; si se utilizan atrayentes en cápsulas, la retención se da en trampa seca, esta puede ser de tipo pegajoso, donde un pegamento retiene los insectos. Las trampas que se manejan para la mosca de la fruta dependen de la naturaleza del atrayente. (ICA, 2011)

Como menciona el ICA (2011) las trampas McPhail se usan con proteínas líquidas, dicho cebo líquido funciona como sistema de retención. En este caso las proteínas líquidas. Para capturar hembras de mosca de la fruta los atrayentes se basan en alimentos o en olores del huésped. Estos cebos capturan tanto machos como hembras, con un porcentaje mayor de hembras. (p. 6)

La proteína hidrolizada se trata de un atrayente alimenticio para la captura masiva de la mosca de la fruta, mediante el uso de mosqueros/trampas, presentado en forma líquida. El ingrediente activo está basado en un formulado proteico desarrollado, tiene la capacidad del poder de atracción y selectividad frente a la plaga de la mosca de la fruta. (Terralia, s.f.)

Generalidades del cultivo de mango

El mango pertenece a la familia de las Anacardiáceas, la cual contiene unas 430 especies, de las que varias son frutales de importancia comercial. Es un árbol de hoja perenne, con un sistema radicular profundo y vigoroso, de corteza gruesa y rugosa con numerosas escamas y copa densa. La inflorescencia es una panícula terminal ramificada, donde se desarrollan numerosas flores masculinas y hermafroditas. El fruto, una drupa cuya semilla única puede contener uno o más
embriones, se presenta en solitario o en racimos según cultivares. (Coello, Fernández y Galán s.f.)

Las principales zonas de cultivo en Guanacaste son: Liberia, Santa Cruz, Nicoya, Carrillo, Nandayure y Abangares. (Ministerio de Agricultura y Ganadería [MAG], 2007)

El mercado para el cultivo del mango está creciendo continuamente. En casi todos los mercados prefieren la fruta de color rojizo, sobre todo los cultivares Tommy Atkins y Haden, siendo éstas las principales variedades cultivadas en la mayoría de los países exportadores; por lo que existe competencia a nivel mundial. (MAG, 2007)
CAPÍTULO III.
Marco metodológico

Enfoque de la investigación

El enfoque de la investigación fue cuantitativo, ya que se contabilizaron las moscas de la fruta capturadas por trampas. Este enfoque permitió un mayor nivel de control siendo posible realizar experimentos y obtener explicaciones contrastadas a partir de hipótesis. Los resultados de ésta investigación se basaron en la estadística y fueron generalizables.

Tipo de investigación

Es una investigación experimental, porque está basada en la manipulación de variables. Los datos se adquirieron de muestras aleatorizadas, de manera que se determinó que la muestra de la cual se obtuvieron fue representativa de la realidad. Y además fue inédita ya que no existen investigaciones enfocadas en pulpa de mango como atrayente alimenticio en trampeos para moscas de la fruta, ni que este método de trampeo puede sustituir a la proteína hidrolizada.

Hipótesis

HO: La pulpa de mango puede sustituir a la proteína hidrolizada como atrayente alimenticio en trampeos de mosca de la fruta en el cultivo de mango.

H1: La pulpa de mango no puede sustituir a la proteína hidrolizada como atrayente alimenticio en trampeos de mosca de la fruta en el cultivo de mango.
Variables

Cuadro 1. Variables y definiciones

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>CONCEPTUAL</th>
<th>OPERACIONAL</th>
<th>INSTRUMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de moscas de la fruta</td>
<td>Es el total de moscas de la fruta capturadas por las trampas</td>
<td>Se debe seleccionar las moscas capturadas de los otros insectos, luego se debe de contar todas las capturadas</td>
<td>Libreta, calculadora, lupa, pinzas</td>
</tr>
<tr>
<td>Proteína Hidrolizada</td>
<td>Componente disolvente en agua que atrae moscas de la fruta</td>
<td>Se deben de tomar 20 gramos de proteína y disolverlos en 300c de agua</td>
<td>Pastillas de levadura</td>
</tr>
<tr>
<td>Pulpa de Mango</td>
<td>Parte carnosa del fruto del mango, triturada</td>
<td>Se debe de verter 300 cc de la pulpa de mango en la trampa</td>
<td>Mango</td>
</tr>
</tbody>
</table>

Métodos y materiales

Bloques al azar.

En una hectárea seleccionada en finca El Canjel, se distribuyó en 6 bloques, cada bloque estaba constituido por seis árboles, por lo tanto, se colocaron tres trampas de cada uno de los dos tratamientos por bloque.

Mediante un sorteo se rifó el tratamiento correspondiente para cada uno de los árboles que estaban dentro del bloque. Se colocaron 36 trampas en total, y estas se codificaron según el tratamiento.
La codificación llevaba las indicaciones para la ubicación de la trampa como número de bloque, la letra que indica el árbol y por último el tratamiento.

Ilustración 2. Codificación de trampa

Ilustración 3. Codificación de trampas
Ilustración 4. Croquis de posicionamiento de bloques

Fórmula matemática
Para la investigación se utilizó el siguiente modelo matemático.

\[y_{ij} = \mu + \tau_i + \varepsilon_{ij} + B_j \]

\(y_{ij} = \) Observaciones.
\(\tau_i = \) Efecto de tratamiento (procedencia).
\(B_j = \) Efecto de bloque.
\(\varepsilon_{ij} = \) Error experimenta.
\(\mu = \) Media.

Tratamientos.
Los tratamientos que se utilizaron en el proceso para esta investigación fueron la proteína hidrolizada como tratamiento uno, y pulpa de mango como tratamiento dos.
T1: Proteína hidrolizada: se preparó con cuatro pastillas de Torula (proteína hidrolizada), cada una de 0,5 gramos, en 300 mililitros de agua, se agitó la mezcla y se esparció en la base de la trampa evitando derrames en el exterior.

T2: Pulpa de mango: se utilizaron mangos en un estado de maduración en grado cinco, se extrajo su parte carnosa comestible, se trituraron hasta obtener una pasta líquida; por cada kilo de mango se debió utilizar 200 mililitros de agua. Se vertió en la base de la trampa evitando derrames en el exterior. Por cada trampa se debió utilizar 300 mililitros de la pasta elaborada.

Ilustración 5. T1: Proteína hidrolizada y T2: Pulpa de mango

Colocación de las trampas.

Se utilizaron trampas caseras en forma de embudo (ver ilustración 5), que es un envase de plástico del tamaño de un litro en forma cilíndrica de dos piezas, la parte superior transparente y con una cinta de color amarilla. En las trampas se usaron: proteína hidrolizada (tratamiento 1), o pulpa de mango (tratamiento 2) según correspondía los bloques al azar.
Las trampas se debieron colocar en árboles con follaje que proporciona sombra durante el día, y tuviera buena ventilación para la dispersión del atrayente. Se colocaron en el tercio superior del árbol y a la mitad de la distancia del tronco, mínimo dos metros de alto, en sentido este-oeste intentando que las ramas del árbol no impidieran el paso del viento para que no recibieran los rayos del sol directamente.

A cada trampa se le estableció un código de identificación, y se registró con las fechas de instalación. Las trampas debieron codificarse así: T (trabajo de tesis) + número de bloque + número de tratamiento. La información se anotó en la base de la trampa, se debió repetir el proceso cada vez que la trampa se reemplazaba.

Ilustración 6. Trampas caseras.
Muestreos.

El procedimiento de inspección de trampas y cambios de atrayentes se debió realizar cada 8 días según lo establecido por el Servicio Fitosanitario Del Estado, esto debido a que un tiempo mayor produciría un deterioro de las moscas capturadas, además los atrayentes van perdiendo su efecto, en lugares calurosos el líquido se evapora y se seca rápidamente. Si se determina que la trampa está muy sucia se debe de lavar con el fin de perjudicar futura capturas de moscas.

El procedimiento de revisión debió realizarse minuciosamente, primero el líquido de la trampa que contiene las moscas capturadas tuvo que pasarse a través de un colador fino, para separar los insectos de la mezcla, utilizando un embudo para evitar derrames. Se lavaban las trampas completamente y se recogieron los desechos del lavado, para que no quedaran residuos en el suelo. El líquido restante se recogía en un recipiente, para ser vertido lejos del área de monitoreo, pero nunca
derramar el líquido en el campo. Si quedaban moscas adheridas a la pared de la trampa, se añadía agua hasta que se despegarán, y de los insectos capturados, se seleccionaron únicamente las moscas de la fruta y el resto se desechó.

Recolectada la información obtenida en el campo, el análisis estadístico se desarrolló mediante el software InfoStat, que mediante el mismo se obtuvo el tratamiento más efectivo. Se utilizó la versión estudiante.

Dentro del análisis estadístico se realizaron pruebas de normalidad esta genera una gráfica de probabilidad normal y realiza una prueba de hipótesis para examinar si las observaciones siguen o no una distribución normal, se utilizó este procedimiento para poner a prueba el supuesto de normalidad, gráficas de dispersión, comparación de diferencias significativas entre bloques y entre tratamiento.
CAPÍTULO IV.
Presentación y análisis de resultados

Para obtener los resultados se realizaron muestreos y se analizaron las variables con el programa de INFOSTAT®, haciendo validación de supuestos (prueba de normalidad de ajuste –Kolmogorov – Levene), análisis de varianza (seleccionando el método de comparación DGC, con un nivel de significancia de 0,05) y análisis de coeficiente de correlación según Pearson.

Gráfico 1 Número de moscas capturadas

Pruebas para los supuestos básicos del análisis de variancia

Normalidad y homogeneidad de variancias (homocedasticidad).

Para hacer las pruebas de supuestos básicos de análisis de variancia se le realizó pruebas de normalidad según Shapiro Wilks a los residuos y análisis de variancia a los residuos absolutos de los datos obtenidos en campo.
Cuadro 2. Normalidad y homogeneidad de variancias

<table>
<thead>
<tr>
<th>Prueba</th>
<th>Probabilidad</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalidad</td>
<td>0,79</td>
<td>Se acepta la hipótesis, los datos tuvieron un comportamiento normal.</td>
</tr>
<tr>
<td>Homogeneidad de</td>
<td>145,1</td>
<td>Se acepta la hipótesis, hay homogeneidad de variancias.</td>
</tr>
<tr>
<td>variancias</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Análisis estadisticos entre bloque

Cuadro 3. Análisis de variancia entre bloques

<table>
<thead>
<tr>
<th>Bloque</th>
<th>Media</th>
<th>P- Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0,25 A</td>
<td>0,06</td>
</tr>
<tr>
<td>3</td>
<td>0,38 A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,63 A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,65 A</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,77 A</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,96 A</td>
<td></td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0,05)
El análisis de variancia realizado indica que el p-valor es de 0,06 mayor que el nivel de significancia por lo tanto no presenta diferencia significativa entre bloques.

Los estudios previos al ensayo estadístico en campo indicaban una heterogeneidad del mismo; pero los resultados obtenidos en campo muestran que no era necesario realizar una investigación en bloques al azar. Posiblemente las condiciones del lote donde se realizó la investigación presentaron una homogeneidad ya que los árboles tenían una edad, etapa fenológica, tamaño, ramificaciones y aireación muy similares y en el tiempo de toma de muestras el clima se mantuvo constante.
Comparación entre Muestreos

Cuadro 4. Análisis de variancia entre muestreos

<table>
<thead>
<tr>
<th>Semanas de Muestreo</th>
<th>Medias</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0,25 A</td>
<td>0,03</td>
</tr>
<tr>
<td>5</td>
<td>0,31 A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,33 A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,53 A</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,58 A</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,86 B</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,94 B</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,03 B</td>
<td></td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0,05)

Gráfico 3. Análisis de variancia entre muestreos
Fuente: Cuadro 4.
Los resultados obtenidos en el análisis de variancia determinan que sí existió diferencias significativas entre las fechas de muestreo de las trampas colectoras de moscas. Los datos tomados en las semanas 1, 2 y 6 no presentaron diferencias significativas (la media más alta, 1,03, se alcanzó en la semana 1). En tanto en las semanas 7, 5, 3, 4 y 8 se comportaron de forma similar (la media más baja se alcanza en semana 7 con 0,25 moscas colectadas).

Con respecto a lo anterior, el cultivo se encontraba en etapa de floración al inicio de los muestreos, con frutos verdes. A las 8 semanas que finalizaron los muestreos, los frutos estaban maduros y por lo general en el suelo; dicho lo anterior, y según los datos obtenidos, indica que la maduración del fruto no alteró los resultados, y como indica el gráfico 3, que en las primeras fechas se capturó mayor cantidad de moscas.

Las condiciones climáticas fueron estables con temperaturas de 34 grados centígrados, con poca presencia de vientos y no hubo precipitaciones, por lo tanto, el clima no fue un factor que afectara los resultados de capturas de acuerdo con los tiempos de muestreos.

Andeva de los tratamientos

Cuadro 5. Análisis de varianza de los tratamientos

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Media</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mango</td>
<td>0,18 A</td>
<td></td>
</tr>
<tr>
<td>Torula</td>
<td>1,03 B</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0,05)
El análisis de variancia indica que existe diferencia significativa entre tratamientos ya que el P-valor es de 0,0001 siendo menor que el nivel de significancia, la levadura de torula fue la que presentó mayor efectividad con una media 1,03 moscas capturadas en comparación con 0,18 que presentó en trampeo con la utilización de pulpa de mango.

La pulpa de mango no fue competente en la captura de moscas de la fruta; existen razones, las cuales pudieron afectar la eficiencia. Por ejemplo, el grado de maduración, la variedad del mango, la forma de preparar el licuado para poner en las trampas ya que a los días de colocarlo se formaba una capa espesa por encima de los líquidos, lo cual pudo alterar la captura, ya que las moscas tenían la oportunidad de ovopositar.
Todo lo contrario de la levadura de torula, este se diferencia en los resultados en comparación con la pulpa de mango ya que tenía las características necesarias para atraer a las moscas de la fruta, ésta presentaba olores muy fuertes y era una mezcla muy soluble la cual le permitía realizar mayor captura de moscas.

Al finalizar el análisis de resultados y encontrar que la pulpa de mango no presentó las características y eficiencias esperadas por los investigadores, se rechaza la hipótesis nula: “Ho: La pulpa de mango puede sustituir a la proteína hidrolizada como atrayente alimenticio en trampeos de mosca de la fruta en el cultivo de mango” y se acepta la hipótesis alternativa: “H1: La pulpa de mango no puede sustituir a la proteína hidrolizada como atrayente alimenticio en trampeos de mosca de la fruta en el cultivo de mango”.
CAPÍTULO V.
Conclusiones y recomendaciones

Conclusiones

Tal como esta investigación lo ha demostrado se concluye que:

- La poca variación del clima (viento) en el periodo de la investigación influyó en que no se presentaran diferencias entre bloques.

- El tratamiento de torula fue el que presentó mayor efectividad en la captura de moscas de fruta en mango ya que la proteína hidrolizada alcanzó medias de 1,03 en tanto que la pulpa de mango se quedó rezagada con una media de 0,25.

- La pulpa de mango presenta problemas ya que sirve como hospedero para que dípteros depositen sus huevos y se desarrollen larvas con fuentes de alimentación de alta calidad nutricional. Ya que al inspeccionar las trampas se encontraban gran cantidad de vermiformes.

- La mezcla de agua y torula según las recomendaciones técnicas queda de forma líquida lo que permitió que las moscas humedecieran las alas y se ahogaran, en tanto que el licuado de mango utilizado al tener una consistencia espesa permitía que la mosca se parara y tuviese la oportunidad de escapar.

- Se rechaza que la pulpa de mango pueda sustituir a la proteína hidrolizada como atrayente alimenticio en trampeos de mosca de la fruta en el cultivo de mango.
Recomendaciones

- Buscar otro atrayente que sea accesible para el productor ya que la pulpa de mango sirvió como huésped de la mosca de la fruta.
- Usar distintas texturas de la pulpa de mango ya que la consistencia al pasar los días se espesaba mucho y esto impedía que la mosca se sumergiera y por ende se ahogara.
- Realizar los trampeos en distintas condiciones climáticas para ver el comportamiento de la mosca de la fruta.
- Probar con diferentes intervalos de tiempo (días de muestreo), para observar en qué momento se realiza mayor captura de moscas.
- Colocar trampas en los puntos críticos donde haya mayor influencia de atracción de la mosca de la fruta.
- Probar con distintas variedades de mango para ver cual tiene las características más óptimas para atraer a la mosca de la fruta.
- Utilizar en trampeos diferentes frutos que sean atractivos para la mosca de la fruta para observar cual es el más eficiente.
- Utilizar trampas con orificios más pequeños para realizar la captura y no logre escapar por el mismo.
- Recolestar los frutos que caen del árbol para evitar hospederos de la mosca de la fruta y así disminuir poblaciones.
CAPÍTULO VI.
Bibliografía y anexos

Bibliografía

Elaboración de trampas.

La trampa casera de forma de embudo ocupa los siguientes elementos:

- Botella transparente de 1 litro.
- 15 centímetros de alambre.
- Cinta de color amarillo.
- Etiqueta.

Para realizar esta trampa de forma de embudo se debe recortar 20% del tamaño de la botella, es decir, el cuello de la botella (ver ilustración 6).

Luego se debe introducir la parte más delgada adentro de la más gruesa con el fin de formar el embudo. (Ilustración 7.)
Ilustración 8. Elaboración de trampa.

Luego se debe doblar el alambre en forma de arco y realizar dos orificios en la botella con el fin de conseguir sostén a la trampa y así pueda ser guindada en el lugar necesario. (Ver Ilustración 8)

La cinta amarilla se debe colocar en el centro de la botella con el fin de volver atractiva la trampa para la mosca de la fruta y por último la etiqueta se debe colocar en la parte superior esto para identificar o reconocer la trampa. (Ver Ilustración 8)

Ilustración 10. Trampas listas

Realización de pulpa de mango.

Para realizar la pulpa de mango se deben utilizar los mangos con un grado de maduración #5, se retira la cascara y se retira solo la parte carnosa del mango. Posteriormente, se debe procesar para convertirla en una pasta (solo pulpa no
agregar líquido); en este caso se procesó con una licuadora. Luego se guarda en recipientes hasta llevar a campo para ser utilizada.

Ilustración 11. Grados de maduración de mango.

Ilustración 13. Pulpa de mango.

Prueba de normalidad.

Shapiro-Wilks (modificado)

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>Media</th>
<th>D.E.</th>
<th>W*</th>
<th>p(Unilateral D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDUO Número de moscas</td>
<td>288</td>
<td>0,00</td>
<td>1,12</td>
<td>0,79</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

Ilustración 14. Prueba de normalidad

Homogeneidad de variancias.

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDUO Número de moscas</td>
<td>288</td>
<td>0,78</td>
<td>0,78</td>
<td>54,76</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>162,83</td>
<td>7</td>
<td>23,26</td>
<td>145,16</td>
<td><0,0001</td>
</tr>
<tr>
<td>Número de moscas</td>
<td>162,83</td>
<td>7</td>
<td>23,26</td>
<td>145,16</td>
<td><0,0001</td>
</tr>
<tr>
<td>Error</td>
<td>44,87</td>
<td>280</td>
<td>0,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>207,70</td>
<td>287</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ilustración 15. Prueba de homogeneidad de variancias
Análisis de Variancia entre bloques.

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>q1</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>16,00</td>
<td>5</td>
<td>3,20</td>
<td>2,07</td>
<td>0,0698</td>
</tr>
<tr>
<td>Bloque</td>
<td>16,00</td>
<td>5</td>
<td>3,20</td>
<td>2,07</td>
<td>0,0698</td>
</tr>
<tr>
<td>Error</td>
<td>436,87</td>
<td>282</td>
<td>1,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>452,87</td>
<td>287</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: DGC Alfa=0,05 PCALT=0,5196
Error: 1,5492 q1: 282

<table>
<thead>
<tr>
<th>Bloque</th>
<th>Medias</th>
<th>n</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0,25</td>
<td>48</td>
<td>0,18 A</td>
</tr>
<tr>
<td>3</td>
<td>0,38</td>
<td>48</td>
<td>0,18 A</td>
</tr>
<tr>
<td>2</td>
<td>0,63</td>
<td>48</td>
<td>0,18 A</td>
</tr>
<tr>
<td>5</td>
<td>0,65</td>
<td>48</td>
<td>0,18 A</td>
</tr>
<tr>
<td>1</td>
<td>0,77</td>
<td>48</td>
<td>0,18 A</td>
</tr>
<tr>
<td>6</td>
<td>0,96</td>
<td>48</td>
<td>0,10 A</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0,05)

Ilustración 16. Análisis de variancia entre bloques

Análisis de variancia entre semanas.

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>q1</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>28,60</td>
<td>7</td>
<td>3,37</td>
<td>2,20</td>
<td>0,0345</td>
</tr>
<tr>
<td>Semana</td>
<td>28,60</td>
<td>7</td>
<td>3,37</td>
<td>2,20</td>
<td>0,0345</td>
</tr>
<tr>
<td>Error</td>
<td>429,28</td>
<td>280</td>
<td>1,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>452,87</td>
<td>287</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: DGC Alfa=0,05 PCALT=0,5444
Error: 1,6331 q1: 280

<table>
<thead>
<tr>
<th>Semana</th>
<th>Medias</th>
<th>n</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0,25</td>
<td>36</td>
<td>0,21 A</td>
</tr>
<tr>
<td>5</td>
<td>0,31</td>
<td>36</td>
<td>0,21 A</td>
</tr>
<tr>
<td>3</td>
<td>0,33</td>
<td>36</td>
<td>0,21 A</td>
</tr>
<tr>
<td>4</td>
<td>0,53</td>
<td>36</td>
<td>0,21 A</td>
</tr>
<tr>
<td>8</td>
<td>0,58</td>
<td>36</td>
<td>0,21 A</td>
</tr>
<tr>
<td>6</td>
<td>0,66</td>
<td>36</td>
<td>0,21 B</td>
</tr>
<tr>
<td>2</td>
<td>0,94</td>
<td>36</td>
<td>0,21 B</td>
</tr>
<tr>
<td>1</td>
<td>1,03</td>
<td>36</td>
<td>0,21 B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0,05)

Ilustración 17. Análisis de variancia entre semanas
Análisis de variancia entre tratamientos.

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Adj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de moscas</td>
<td>288</td>
<td>0,11</td>
<td>0,11</td>
<td>196,04</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>51,68</td>
<td>1</td>
<td>51,68</td>
<td>36,84</td>
<td><0,0001</td>
</tr>
<tr>
<td>Arrayente</td>
<td>51,68</td>
<td>1</td>
<td>51,68</td>
<td>36,84</td>
<td><0,0001</td>
</tr>
<tr>
<td>Error</td>
<td>401,19</td>
<td>286</td>
<td>1,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>452,87</td>
<td>287</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: DGC Alfa=0,05 FCALT=0,2747
Error: 1,4028 gl: 286

Arrayente Medias

<table>
<thead>
<tr>
<th>Arrayente</th>
<th>Medias</th>
<th>n</th>
<th>E.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mango</td>
<td>0,18</td>
<td>144</td>
<td>A</td>
</tr>
<tr>
<td>Torula</td>
<td>1,03</td>
<td>144</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0,05)

Ilustración 18. Análisis de variancia entre tratamientos.