2024-10-282024-10-28https://hdl.handle.net/20.500.13077/1317El artículo pretende entender los requerimientos de los ecosistemas productivos e identificar elementos clave para el surgimiento y éxito de empresas o sectores en regiones específicas,  a través del uso eficiente de cada área en contraste con las características de las regiones y comunidades, y la identificación de áreas propicias para el desarrollo sectorial. También aborda la implementación de políticas públicas, para priorizar el "rescate del talento" como catalizador de efectos positivos más amplios, inclusive la innovación y el desarrollo sostenible. La metodología utilizada incluye una exhaustiva revisión bibliográfica para conocer los tratamientos previos de los ecosistemas productivos. Se presenta el Optimizador de Ecosistemas Productivos (Opt-EP), un algoritmo heurístico basado en Monte Carlo que identifica actividades productivas con alto potencial e impacto en una región.  Los resultados presentan a Opt-EP como una herramienta avanzada de inteligencia artificial especializada en analizar el "ADN Productivo" de las regiones. Mediante algoritmos heurísticos, Opt-EP profundiza en las dinámicas socioeconómicas, culturales, medioambientales y económicas, descomponiendo las medidas para obtener una visión más detallada. La integración del concepto de ADN Productivo proporciona una base sólida para diseñar políticas públicas adaptadas a las características únicas de cada región, subrayando la importancia de identificar y nutrir las capacidades intrínsecas de cada zona para lograr un desarrollo económico auténtico y sostenible.This article aims to understand the requirements of productive ecosystems and identify key elements for the emergence and success of companies or sectors in specific regions, seeking an efficient use of each area by contrasting it with the characteristics of regions and communities, identifying areas conducive to sectoral development. It also addresses the implementation of public policies, prioritizing the "rescue of talent" as a catalyst for broader positive effects, including innovation and sustainable development. The methodology used includes an exhaustive literature review to understand previous treatments of productive ecosystems. The Optimizer of Productive Ecosystems (Opt-EP), a Monte Carlo-based heuristic algorithm that identifies productive activities with high potential and impact in a region, is presented.  The results present Opt-EP as an advanced artificial intelligence tool specialized in analyzing the "Productive DNA" of regions. Using heuristic algorithms, Opt-EP delves into socio-economic, cultural, environmental, and economic dynamics, decomposing measurements to obtain a more detailed view. The integration of the Productive DNA concept provides a solid basis for designing public policies tailored to the unique characteristics of each region, underscoring the importance of identifying and nurturing the intrinsic capabilities of each area to achieve authentic and sustainable economic development.application/pdftext/htmlapplication/epub+zipDerechos de autor 2024 Osvaldo Alvarado, Jhon Fonsecahttps://creativecommons.org/licenses/by-nc-sa/4.0Ecosistemas productivosSectores impulsoresBienestarTalento humanoEconomía del conocimientoProductive ecosystemsDriving sectorsWell-beingHuman talentKnowledge economyInnovación en la función pública: gestión basada en datos, ecosistemas productivos, sectores impulsores y el optimizadorPublic Service Innovation: Data-driven Management, Productive ecosystems, Driving Sectors and the Optimizerinfo:eu-repo/semantics/article