In Vitro Evaluation of Postbiotics Produced from Bacterial Isolates Obtained from Rainbow Trout and Nile Tilapia against the Pathogens Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida

dc.creatorMario Quintanilla-Pineda
dc.creatorChajira Garrote Achou
dc.creatorJesús Díaz
dc.creatorAna Gutiérrez-Falcon
dc.creatorMaría Bravo
dc.creatorJuan Ignacio Herrera-Muñoz
dc.creatorNelson Peña-Navarro
dc.creatorCarlos Alvarado
dc.creatorFrancisco C. Ibañez
dc.creatorFlorencio Marzo
dc.date.accessioned2024-04-08T16:10:25Z
dc.date.available2024-04-08T16:10:25Z
dc.date.issued2023-07-17
dc.description.abstractThe use of antibiotics in aquaculture leads to the proliferation of multidrug-resistant bacteria, and an urgent need for developing new alternatives to prevent and control disease has, thus, arisen. In this scenario, postbiotics represent a promising tool to achieve this purpose; thus, in this study, isolation and selection of bacteria to further produce and evaluate their postbiotics antibacterial activity against fish pathogens was executed. In this respect, bacterial isolates from rainbow trout and Nile tilapia were obtained and tested in vitro against Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. From 369 obtained isolates, 69 were selected after initial evaluation. Afterwards, additional screening was carried out by spot-on-lawn assay to finally select twelve isolates; four were identified as Pediococcus acidilactici, seven as Weissella cibaria, and one as Weissella paramesenteroides by matrix assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS). Selected bacteria were used to obtain postbiotic products to test their antagonistic activity through coculture challenge and broth microdilution assays. The influence of incubation time prior to postbiotic production on antagonistic behavior was also recorded. Two isolates identified as W. cibaria were able to significantly reduce (p < 0.05) A. salmonicida subsp. salmonicida’s growth in the coculture challenge up to 4.49 0.05 Log CFU/mL, and even though the reduction in Y. ruckeri was not as effective, some inhibition on the pathogen’s growth was reported; at the same time, most of the postbiotic products obtained showed more antibacterial activity when obtained from broth cultures incubated for 72 h. Based on the results obtained, the preliminary identification of the isolates that expressed the highest inhibitory activity was confirmed by partial sequencing as W. cibaria. Through our study, it can be concluded that postbiotics produced by these strains are useful to inhibit the growth of the pathogens and could, thereby, be applicable in further research to develop suitable tools as feed additives for disease control and prevention in aquaculture.
dc.formatPDF
dc.format.extent16
dc.identifier.citationhttps://doi.org/10.3390/foods12040861
dc.identifier.urihttps://hdl.handle.net/20.500.13077/905
dc.language.isoeng
dc.rightsacceso abierto
dc.subjectfurunculosis
dc.subjectyersiniosis
dc.subjectWeissella
dc.subjectbiological tools
dc.subjectantibacterial
dc.subjectmicrobiota
dc.subjectdiseases
dc.subjectalternative treatment methods
dc.titleIn Vitro Evaluation of Postbiotics Produced from Bacterial Isolates Obtained from Rainbow Trout and Nile Tilapia against the Pathogens Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida
dc.typeartículo
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
In_Vitro_Evaluation_of_Postbio.pdf
Size:
863.89 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: